Check if a given binary tree is symmetric tree or not

Write a program to check if the given binary tree is symmetric tree or not. A symmetric tree is defined as a tree which is mirror image of itself about the root node. For example, following tree is a symmetric tree.


whereas, following tree is not a symmetric tree.


Video coming soon!



Subscribe for more updates


Algorithm/Insights

The algorithm is an implementation of a simple idea that -
1. For given two trees, if both trees are empty then they are mirror images of one another.
Else they have to satisfy following conditions:
2. Root values of both trees have to be same.
3. Left sub-tree of tree1 should be mirror image of right sub-tree of tree2.
4. Right sub-tree of tree1 should be mirror image of left sub-tree of tree2.

Initial call to isSymmetric(TreeNode root1, TreeNode root2) is made with root1 = root and root2 = root.

Time complexity of this algorithm is O(n) since in the worst case each node need to be visited once.


Algorithm Visualization




Code Snippet

			
package com.ideserve.questions.nilesh;

/**
 * <b>IDeserve <br>
 * <a href="https://www.youtube.com/c/IDeserve">https://www.youtube.com/c/IDeserve</a>
 * O(n) solution to check if binary tree is symmetric or not. Uses Pre-order traversal.
 * @author Nilesh
 */

public class CheckIfSymmetricBinaryTree 
{
    class TreeNode
    {
        TreeNode left;
        TreeNode right;
        int value;
    
        public TreeNode(int value)
        {
            this.value = value;
        }
    }
    
    TreeNode root;

    
    /*
                            0
                      1             1
                  3      4       4     3
                    5                 5
                      
    */
    private TreeNode createTree()
    {
        this.root = new TreeNode(0);
        TreeNode n10   = new TreeNode(1);
        TreeNode n11   = new TreeNode(1);
        TreeNode n30   = new TreeNode(3);
        TreeNode n31   = new TreeNode(3);
        TreeNode n40   = new TreeNode(4);
        TreeNode n41   = new TreeNode(4);
        TreeNode n50   = new TreeNode(5);
        TreeNode n51   = new TreeNode(5);
        
        root.left  = n10;
        root.right = n11;
        
        n10.left  = n30;
        n10.right = n40;
        
        n11.right = n31;
        n11.left  = n41;

        n30.left = n50;
        n31.right = n51;
        
        return root;
    }


    private boolean isSymmetric(TreeNode root1, TreeNode root2)
    {
        if (root1 == null && root2 == null)
        {
            return true;
        }
        else if (root1 == null || root2 == null)
        {
            return false;
        }
        
        if (root1.value == root2.value)
        {
            if (isSymmetric(root1.left, root2.right))
            {
                return isSymmetric(root1.right, root2.left);
            }
        }
        return false;
    }


    public boolean isSymmetric(TreeNode root)
    {
        return isSymmetric(root, root);
    }
    
    
    public static void main(String[] args)
    {
        CheckIfSymmetricBinaryTree tree = new CheckIfSymmetricBinaryTree();

        /*
                                0
                          1             1
                      3      4       4     3
                        5                 5
                          
        */
        tree.createTree();

        System.out.println("tree is symmetric: "+tree.isSymmetric(tree.root));
    }
}
		

Order of the Algorithm

Time Complexity is O(n)
Space Complexity is O(n)


Contribution

  • Sincere thanks from IDeserve community to Nilesh More for compiling current post.

    Nilesh More

    Ninja Programmer